skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fazio, Giovanni G"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The time-variable emission from the accretion flow of Sgr A*, the supermassive black hole at the Galactic center, has long been examined in the radio-to-millimeter, near-infrared (NIR), and X-ray regimes of the electromagnetic spectrum. However, until now, sensitivity and angular resolution have been insufficient in the crucial mid-infrared (MIR) regime. The MIRI instrument on JWST has changed that, and we report the first MIR detection of Sgr A*. The detection was during a flare that lasted about 40 minutes, a duration similar to NIR and X-ray flares, and the source's spectral index steepened as the flare ended. The steepening suggests that synchrotron cooling is an important process for Sgr A*'s variability and implies magnetic fields strengths ~ 40–70 G in the emission zone. Observations at 1.3 mm with the Submillimeter Array revealed a counterpart flare lagging the MIR flare by ≈10 minutes. The observations can be self-consistently explained as synchrotron radiation from a single population of gradually cooling high-energy electrons accelerated through (a combination of) magnetic reconnection and/or magnetized turbulence. 
    more » « less
    Free, publicly-accessible full text available January 20, 2026
  2. Abstract Using the first epoch of four-band NIRCam observations obtained by the James Webb Space Telescope (JWST) Prime Extragalactic Areas for Reionization and Lensing Science Program in the Spitzer IRAC Dark Field, we search for F150W and F200W dropouts. In 14.2 arcmin2, we have found eight F150W dropouts and eight F200W dropouts, all brighter than 27.5 mag (the brightest being ∼24 mag) in the band to the red side of the break. As they are detected in multiple bands, these must be real objects. Their nature, however, is unclear, and characterizing their properties is important for realizing the full potential of JWST. If the observed color decrements are due to the Lyman break, these objects should be atz≳ 11.7 andz≳ 15.4, respectively. The color diagnostics show that at least four F150W dropouts are far away from the usual contaminators encountered in dropout searches (red galaxies at much lower redshifts or brown dwarf stars). While the diagnostics of the F200W dropouts are less certain due to the limited number of passbands, at least one of them is likely not a known type of contaminant, and the rest are consistent with either high-redshift galaxies with evolved stellar populations or old galaxies atz≈ 3–8. If a significant fraction of our dropouts are indeed atz≳ 12, we have to face the severe problem of explaining their high luminosities and number densities. Spectroscopic identifications of such objects are urgently needed. 
    more » « less
  3. Abstract We give an overview and describe the rationale, methods, and first results from NIRCam images of the JWST “Prime Extragalactic Areas for Reionization and Lensing Science” (PEARLS) project. PEARLS uses up to eight NIRCam filters to survey several prime extragalactic survey areas: two fields at the North Ecliptic Pole (NEP); seven gravitationally lensing clusters; two high redshift protoclusters; and the iconic backlit VV 191 galaxy system to map its dust attenuation. PEARLS also includes NIRISS spectra for one of the NEP fields and NIRSpec spectra of two high-redshift quasars. The main goal of PEARLS is to study the epoch of galaxy assembly, active galactic nucleus (AGN) growth, and First Light. Five fields—the JWST NEP Time-Domain Field (TDF), IRAC Dark Field, and three lensing clusters—will be observed in up to four epochs over a year. The cadence and sensitivity of the imaging data are ideally suited to find faint variable objects such as weak AGN, high-redshift supernovae, and cluster caustic transits. Both NEP fields have sightlines through our Galaxy, providing significant numbers of very faint brown dwarfs whose proper motions can be studied. Observations from the first spoke in the NEP TDF are public. This paper presents our first PEARLS observations, their NIRCam data reduction and analysis, our first object catalogs, the 0.9–4.5 μ m galaxy counts and Integrated Galaxy Light. We assess the JWST sky brightness in 13 NIRCam filters, yielding our first constraints to diffuse light at 0.9–4.5 μ m. PEARLS is designed to be of lasting benefit to the community. 
    more » « less